MCS Environmental
Is Mold Contamination a Health Threat?
The Fungus Among Us
Molds, a subset of the fungi, are ubiquitous on our
planet. Fungi are found in every ecological niche, and are necessary for the
recycling of organic building blocks that allow plants and animals to live.
Included in the group "fungi" are yeasts, molds and mildews, as well as large
mushrooms, puffballs and bracket fungi that grow on dead trees. Fungi need
external organic food sources and water to be able to grow.
Molds
Many molds reproduce by making spores, which, if they land on a moist food source, can germinate and begin producing a branching network of cells called hyphae. Molds have varying requirements for moisture, food, temperature and other environmental conditions for growth. Indoor spaces that are wet, and have organic materials that mold can use as a food source, can and do support mold growth. Mold spores or fragments that become airborne can expose people indoors through inhalation or skin contact.
Molds can have an impact on human health, depending on the nature of the species involved, the metabolic products being produced by these species, the amount and duration of individual’s exposure to mold parts or products, and the specific susceptibility of those exposed.
Health effects generally fall into four categories. These four categories are allergy, infection, irritation (mucous membrane and sensory), and toxicity.
Allergy
Allergic reactions can range from mild, transitory responses, to severe, chronic illnesses. The Institute of Medicine (1993) estimates that one in five Americans suffers from allergic rhinitis, the single most common chronic disease experienced by humans. Additionally, about 14 % of the population suffers from allergy-related sinusitis, while 10 to 12% of Americans have allergically-related asthma. About 9% experience allergic dermatitis. A very much smaller number, less than one percent, suffer serious chronic allergic diseases such as allergic bronchopulmonary aspergillosis (ABPA) and hypersensitivity pneumonitis. Allergic fungal sinusitis is a not uncommon illness among atopic individuals residing or working in moldy environments. There is some question whether this illness is solely allergic or has an infectious component. Molds are just one of several sources of indoor allergens, including house dust mites, cockroaches, effluvia from domestic pets (birds, rodents, dogs, cats) and microorganisms (including molds).
While there are thousands of different molds that can contaminate indoor air, purified allergens have been recovered from only a few of them. This means that atopic individuals may be exposed to molds found indoors and develop sensitization, yet not be identified as having mold allergy. Allergy tests performed by physicians involve challenge of an individual’s immune system by specific mold allergens. Since the reaction is highly specific, it is possible that even closely related mold species may cause allergy, yet that allergy may not be detected through challenge with the few purified mold allergens available for allergy tests. Thus a positive mold allergy test indicates sensitization to an antigen contained in the test allergen (and perhaps to other fungal allergens) while a negative test does not rule out mold allergy for atopic individuals.
Infection
There are other fungi that cause systemic infections, such as Coccidioides, Histoplasma, and Blastomyces. These fungi grow in soil or may be carried by bats and birds, but do not generally grow in indoor environments. Their occurrence is linked to exposure to wind-borne or animal-borne contamination.
Mucous Membrane and Trigeminal Nerve Irritation
Just as occurs with human food consumption, the nature of the food source on which a fungus grows may result in particularly pungent or unpleasant primary metabolic products. Certain fungi can release highly toxic gases from the substrate on which they grow. For instance, one fungus growing on wallpaper released the highly toxic gas arsine from arsenic containing pigments.
Fungi can also produce secondary metabolites as needed. These are not produced at all times since they require extra energy from the organism. Such secondary metabolites are the compounds that are frequently identified with typically "moldy" or "musty" smells associated with the presence of growing mold. However, compounds such as pinene and limonene that are used as solvents and cleaning agents can also have a fungal source. Depending on concentration, these compounds are considered to have a pleasant or "clean" odor by some people. Fungal volatile secondary metabolites also impart flavors and odors to food. Some of these, as in certain cheeses, are deemed desirable, while others may be associated with food spoilage. There is little information about the advantage that the production of volatile secondary metabolites imparts to the fungal organism. The production of some compounds is closely related to sporulation of the organism. "Off" tastes may be of selective advantage to the survival of the fungus, if not to the consumer.
In addition to mucous membrane irritation, fungal volatile compounds may impact the "common chemical sense" which senses pungency and responds to it. This sense is primarily associated with the trigeminal nerve (and to a lesser extent the vagus nerve). This mixed (sensory and motor) nerve responds to pungency, not odor, by initiating avoidance reactions, including breath holding, discomfort, or paresthesias, or odd sensations, such as itching, burning, and skin crawling. Changes in sensation, swelling of mucous membranes, constriction of respiratory smooth muscle, or dilation of surface blood vessels may be part of fight or flight reactions in response to trigeminal nerve stimulation. Decreased attention, disorientation, diminished reflex time, dizziness and other effects can also result from such exposures.
It is difficult to determine whether the level of volatile compounds produced by fungi influence the total concentration of common VOCs found indoors to any great extent. A mold-contaminated building may have a significant contribution derived from its fungal contaminants that is added to those VOCs emitted by building materials, paints, plastics and cleaners. Miller and co-workers (1988) measured a total VOC concentration approaching the levels at which Otto et al., (1989) found trigeminal nerve effects.
At higher exposure levels, VOCs from any source are mucous membrane irritants, and can have an effect on the central nervous system, producing such symptoms as headache, attention deficit, inability to concentrate or dizziness.
Adverse Reactions to Odor
Toxicity
Molds can produce other secondary metabolites such as antibiotics and mycotoxins.
Antibiotics are isolated from mold (and some bacterial) cultures and some of
their bacteriotoxic or bacteriostatic properties are exploited medicinally to
combat infections.
Mycotoxins are also products of secondary metabolism of molds. They are not essential to maintaining the life of the mold cell in a primary way (at least in a friendly world), such as obtaining energy or synthesizing structural components, informational molecules or enzymes. They are products whose function seems to be to give molds a competitive advantage over other mold species and bacteria. Mycotoxins are nearly all cytotoxic, disrupting various cellular structures such as membranes, and interfering with vital cellular processes such as protein, RNA and DNA synthesis. Of course they are also toxic to the cells of higher plants and animals, including humans.
Mycotoxins vary in specificity and potency for their target cells, cell structures or cell processes by species and strain of the mold that produces them. Higher organisms are not specifically targeted by mycotoxins, but seem to be caught in the crossfire of the biochemical warfare among mold species and molds and bacteria vying for the same ecological niche.
Not all molds produce mycotoxins, but numerous species do (including some found indoors in contaminated buildings). Toxigenic molds vary in their mycotoxin production depending on the substrate on which they grow. The spores, with which the toxins are primarily associated, are cast off in blooms that vary with the mold’s diurnal, seasonal and life cycle stage. The presence of competitive organisms may play a role, as some molds grown in monoculture in the laboratory lose their toxic potency. Until relatively recently, mold poisons were regarded with concern primarily as contaminants in foods.
More recently concern has arisen over exposure to multiple mycotoxins from a mixture of mold spores growing in wet indoor environments. Health effects from exposures to such mixtures can differ from those related to single mycotoxins in controlled laboratory exposures. Indoor exposures to toxigenic molds resemble field exposures of animals more closely than they do controlled experimental laboratory exposures. Animals in controlled laboratory exposures are healthy, of the same age, raised under optimum conditions, and have only the challenge of known doses of a single toxic agent via a single exposure route. In contrast, animals in field exposures are of mixed ages, and states of health, may be living in less than optimum environmental and nutritional conditions, and are exposed to a mixture of toxic agents by multiple exposure routes. Exposures to individual toxins may be much lower than those required to elicit an adverse reaction in a small controlled exposure group of ten animals per dose group. The effects from exposure may therefore not fit neatly into the description given for any single toxin, or the effects from a particular species, of mold.
Field exposures of animals to molds (in contrast to controlled laboratory exposures) show effects on the immune system as the lowest observed adverse effect. Such immune effects are manifested in animals as increased susceptibility to infectious diseases. It is important to note that almost all mycotoxins have an immunosuppressive effect, although the exact target within the immune system may differ. Many are also cytotoxic, so that they have route of entry effects that may be damaging to the gut, the skin or the lung. Such cytotoxicity may affect the physical defense mechanisms of the respiratory tract, decreasing the ability of the airways to clear particulate contaminants (including bacteria or viruses), or damage alveolar macrophages, thus preventing clearance of contaminants from the deeper lung. The combined result of these activities is to increase the susceptibility of the exposed person to infectious disease, and to reduce his defense against other contaminants. They may also increase susceptibility to cancer
Because indoor samples are usually comprised of a mixture of molds and their spores, it has been suggested that a general test for cytotoxicity be applied to a total indoor sample to assess the potential for hazard as a rough assessment.
The following summary of toxins and their targets is adapted from Smith and Moss (1985), with a few additions from the more recent literature. While this compilation of effects does not describe the effects from multiple exposures, which could include synergistic effects, it does give a better idea of possible results of mycotoxin exposure to multiple molds indoors.
It should be noted that not all mold genera have been tested for toxins, nor have all species within a genus necessarily been tested. Conditions for toxin production varies with cell and diurnal and seasonal cycles and substrate on which the mold grows, and those conditions created for laboratory culture may differ from those the mold encounters in its environment.
Toxicity can arise from exposure to mycotoxins via inhalation of mycotoxin-containing mold spores or through skin contact with the toxigenic molds. A number of toxigenic molds have been found during indoor air quality investigations in different parts of the world. Among the genera most frequently found in numbers exceeding levels that they reach outdoors are Aspergillus, Penicillium, Stachybotrys, and Cladosporium. Penicillium, Aspergillus and Stachybotrys toxicity, especially as it relates to indoor exposures, will be discussed briefly in the paragraphs that follow.
Penicillium
Important toxins produced by penicillia include nephrotoxic citrinin, produced by P. citrinum, P. expansum and P. viridicatum; nephrotoxic ochratoxin, from P. cyclopium and P. viridicatum, and patulin, cytotoxic and carcinogenic in rats, from P. expansum.
Aspergillus
Stachybotrys chartarum (atra)
Stachybotrys chartarum (atra) has been much discussed in the popular press
and has been the subject of a number of building related illness investigations.
It is a mold that is not readily measured from air samples because its spores,
when wet, are sticky and not easily aerosolized. Because it does not compete
well with other molds or bacteria, it is easily overgrown in a sample,
especially since it does not grow well on standard media. Its inability to
compete may also result in its being killed off by other organisms in the sample
mixture. Thus, even if it is physically captured, it will not be viable and will
not be identified in culture, even though it is present in the environment and
those who breathe it can have toxic exposures. This organism has a high moisture
requirement, so it grows vigorously where moisture has accumulated from roof or
wall leaks, or chronically wet areas from plumbing leaks. It is often hidden
within the building envelope. When S. chartarum is found in an air
sample, it should be searched out in walls or other hidden spaces, where it is
likely to be growing in abundance. This mold has a very low nitrogen
requirement, and can grow on wet hay and straw, paper, wallpaper, ceiling tiles,
carpets, insulation material (especially cellulose-based insulation). It also
grows well when wet filter paper is used as a capturing medium.